Fed-batch cultivation of Saccharomyces cerevisiae in a hyperbaric bioreactor.

نویسندگان

  • I Belo
  • R Pinheiro
  • M Mota
چکیده

Fed-batch is the dominating mode of operation in high-cell-density cultures of Saccharomyces cerevisae in processes such as the production of baker's yeast and recombinant proteins, where the high oxygen demand of these cultures makes its supply an important and difficult task. The aim of this work was to study the use of hyperbaric air for oxygen mass transfer improvement on S. cerevisiae fed-batch cultivation. The effects of increased air pressure up to 1.5 MPa on cell behavior were investigated. The effects of oxygen and carbon dioxide were dissociated from the effects of total pressure by the use of pure oxygen and gas mixtures enriched with CO(2). Fed-batch experiments were performed in a stirred tank reactor with a 600 mL stainless steel vessel. An exponential feeding profile at dilution rates up to 0.1 h(-)(1) was used in order to ensure a subcritical flux of substrate and, consequently, to prevent ethanol formation due to glucose excess. The ethanol production observed at atmospheric pressure was reduced by the bioreactor pressurization up to 1.0 MPa. The maximum biomass yield, 0.5 g g(-)(1) (cell mass produced per mass of glucose consumed) was attained whenever pressure was increased gradually through time. This demonstrates the adaptive behavior of the cells to the hyperbaric conditions. This work proved that hyperbaric air up to 1.0 MPa (0.2 MPa of oxygen partial pressure) could be applied to S. cerevisiae cultivation under low glucose flux. Above that critical oxygen partial pressure value, i.e., for oxygen pressures of 0.32 and 0.5 MPa, a drastic cell growth inhibition and viability loss were observed. The increase of carbon dioxide partial pressure in the gas mixture up to 48 kPa slightly decreased the overall cell mass yield but had negligible effects on cell viability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of A Fed-Batch Fermenter Producing Baker’s Yeast Using Simulated Annealing Method

Modeling of fermentation processes is so complicated and uncertain; therefore it is necessary to provide a robust and appropriate dynamic optimization method. In order to obtain the maximum amount of yeast (Saccharomyces cerevisiae), the bioreactor must be operated under optimal conditions. To determine substrate feeding in a fed-batch bioreactor, a simulated annealing (SA) approach was examine...

متن کامل

FED-BATCH BIOREACTOR PROCESS WITH RECOMBINANT Saccharomyces cerevisiae GROWING ON CHEESE WHEY

Saccharomyces cerevisiae strain W303 was transformed with two yeast integrative plasmids containing Kluyveromyces lactis LAC4 and LAC12 genes that codify β-galactosidase and lactose permease respectively. The BLR030 recombinant strain was selected due to its growth and β-galactosidase production capacity. Different culture media based on deproteinized cheese whey (DCW) were tested and the best ...

متن کامل

Enhanced Bioethanol Production in Batch Fermentation by Pervaporation Using a PDMS Membrane Bioreactor

The integration of batch fermentation and membrane-based pervaporation process in a membrane bioreactor (MBR) was studied to enhance bioethanol production compared to conventional batch fermentation operated at optimum condition. For this purpose, a laboratory-scale MBR system was designed and fabricated. Dense hydrophobic Polydimethylsiloxane (PDMS) membrane was used for pervaporation. For fer...

متن کامل

Production of Single Cell Protein from Sugarcane Bagasse by Saccharomyces cerevisiae in Tray Bioreactor

In this study, solid state fermentation (SSF) was carried out to produce single cell protein (SCP) from sugarcane bagasse using Saccharomyces cerevisiae. The SSF experiment were performed in a tray bioreactor. The influence of several parameters including extraction buffer, initial moisture content of substrate, fermentation time, relative humidity in bioreactor, the bioreactor temperature and ...

متن کامل

A novel process-based model of microbial growth: self-inhibition in Saccharomyces cerevisiae aerobic fed-batch cultures

BACKGROUND Microbial population dynamics in bioreactors depend on both nutrients availability and changes in the growth environment. Research is still ongoing on the optimization of bioreactor yields focusing on the increase of the maximum achievable cell density. RESULTS A new process-based model is proposed to describe the aerobic growth of Saccharomyces cerevisiae cultured on glucose as ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biotechnology progress

دوره 19 2  شماره 

صفحات  -

تاریخ انتشار 2003